go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/I018212/1
Title Reverse engineering and synthesis of self-assembling photo-responsive surfactants for CO2 solubilization
Status Completed
Energy Categories Not Energy Related 50%;
Fossil Fuels: Oil Gas and Coal(CO2 Capture and Storage, CO2 storage) 25%;
Fossil Fuels: Oil Gas and Coal(CO2 Capture and Storage, CO2 capture/separation) 25%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields ENGINEERING AND TECHNOLOGY (Chemical Engineering) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr EA Muller
No email address given
Chemical Engineering
Imperial College London
Award Type Standard
Funding Source EPSRC
Start Date 01 June 2012
End Date 31 May 2014
Duration 24 months
Total Grant Value £168,022
Industrial Sectors Energy
Region London
Programme NC : Physical Sciences
 
Investigators Principal Investigator Dr EA Muller , Chemical Engineering, Imperial College London (100.000%)
Web Site
Objectives
Abstract A new way to control properties of liquid CO2 will be found. This will allow the liquid properties of CO2 to be remote-controlled, using light as a switch.Today, reduction in atmospheric CO2 levels is the greatest challenge facing scientists, engineers, politicians and economists.1 Of all the solutions proposed CO2 capture, sequestration and storage is recognized as a viable approach to control CO2 levels. However, CO2 entrapment and storage technologies will require efficient and effective command over the fluid properties of CO2; obviously, vast volumes of liquid CO2 will need to be handled and processed. For example, CO2 sequestration in sandstone or limestone reservoirs that occurs during CO2 enhanced oil recovery (EOR) would be more economically viable and technically efficient if viscous fingering could be suppressed by thickening the CO2.Although on paper the concept appears to be straightforward, that is find scCO2-compatible additives, as is commonly done for water (soaps and detergents, synthetic and bio-polymers, salts and co-solvents), in practice there are significant physico-chemical barriers to overcome. What it all comes down to is the inescapable fact that feeble intermolecular interactions make CO2 a very weak solvent, being essentially in a class of its own when compared to water and any other polar or apolar organic solvents. The upshot is that most commercially available solutes are incompatible with scCO2, and so the scope for solvent modification using readily available additives is at best extremely limited. Simply put, CO2 is one of the most stubborn of all chemical beasts, and taming it presents a great chemical engineering challenge.This project will design and generate new additives (surfactants) which and be using external light: this will allow us to control the CO2 fluid properties "at the flick of a switch", as this cannot be done using any of the currently available chemicals. . This would open the doors to optimization of CO2 for industrial chemistry processes, as an environmentally friendly solvent, and also for processing and handling fluid CO2 in carbon capture technologies, for effective subterranean storage
Publications (none)
Final Report (none)
Added to Database 10/07/12